
Slide 1

Kernel Panics!
And other nightmares

by James Reynolds

Slide 2

Why?

Advantages of knowing how to debug

• The obvious, preventing future panics

• Not sure what is going on, go into debug mode

• Looks good on a resume?

• Bragging rights for sure

Slide 3

What is the kernel?

Process traffic cop (stop/go), aka
scheduling
Manages memory (gives out memory)
Speaks hardware input/output

• Hard Disk
• Video Card/Display
• USB - mouse/keyboard/printer/other peripherals
• Firewire
• Expansion cards
• etc

Slide 4

What is a crash?

Something unexpected happens

• Car unexpectedly spins out of control

• Car unexpectedly collides with another car

• Car unexpectedly collides with wall

• Car unexpectedly collides into person

• Car unexpectedly plunges off a cliff & explodes

Slide 5

What is a crash?

Something unexpected happens

• Divide by zero

• Write to memory that isn’t yours

• Try to write to freed memory

• Access a variable that doesn’t exist

• Put a K of data into a variable that holds a byte

Slide 6

What is a crash?

“y = z/x” will crash if x = 0

Good programs check before being bad

• Ex: if (x != 0) then { y = z/x }

Really good programs will recover

• Ex: if (x != 0) then { y = z/x } else { /*recover*/ }

• Many programmers are too busy/lazy/
understaffed/inexperienced/distracted/etc

• So programs crash

Slide 7

What is a crash?

I remarked to Dennis that easily half the code I was
writing in Multics was error recovery code. He said, 'We
left all that stuff out. If there's an error, we have this
routine called panic, and when it is called, the machine
crashes, and you holler down the hall, 'Hey, reboot it.'

Lunch conversation between Tom van Vleck and Dennis Rictchie
http://www.multicians.org/unix.html

Slide 8

When the Kernel panics

Two main causes of kernel panics

• Hardware problem

• Bad USB/Firewire/SCSI/PCI interfaces/cards/devices

• Bad RAM

• Bad processor, etc

• Software problem

• Bad 3rd party driver

• Bad 3rd party kernel extension

• Kernel bug

Slide 9

Debugging anyone can do

KNOW when they happen (for sys
admins)

• Send /Library/Logs/panic.log to yourself!
cd /Library/Logs
if [-e “panic.log”]; then

 uuencode panic.log panic.log | mail -s panic_log root

 # or
 cat panic.log | mail -s panic_log root

 rm panic.log
fi

• Set up a core dump server (more later)

Slide 10

Debugging anyone can do

Find bad hardware (RAM, USB, SCSI/PCI,
etc)

• Play the swap game

• Remove all extra devices

• Check that all cables are snug

• Repair hard disk w/ Disk Utility or DiskWarrior

• Run Apple’s Hardware Test CD & other tools

• TechTool Pro, Memtest/Rember

Slide 11

Debugging anyone can do

Make sure /System has correct
permissions

• Run Disk Utilities’ “Repair Permissions”

Find bad kernel extensions/hardware

drivers

• Disable all extras (/Library/StartupItems)

• Check for version compatibilities

• Safe boot (hold shift after pressing on button)

• Reinstall OS if last resort

Slide 12

Debugging for superheros

Read the panic log

Use gdb

• 2 machine debugging

• Set up a panic dump server

Build custom kernel

Slide 13

Reading the Panic File

“Understanding and Debugging Kernel
Panics”

• developer.apple.com/technotes/tn2002/tn2063.html

Log is at /Library/Logs/panic.log

Look at Backtrace

• This is the code (in hex) that caused the error

• You can’t read it without gdb (more later)

Slide 14

Reading the Panic File

Look at the loaded modules
• Often this will tell you the culprit

Finding an extension
• com.apple.AppleDiskImageController(110)@0x1b76c000

 dependency: com.apple.iokit.IOStorageFamily(1.4)@0x1ae3d000

• cd /System/Library/Extentions
 grep -r com.apple.AppleDiskImageController *

• Result: IOHDIXController.kext
• Loads disk images? (Googling didn’t help too much)

Slide 15

Reading the Panic File

What more can I do?
• Later on, when running gdb...
• cd /System/Library/Extensions

 kextload -s /tmp -n IOHDIXController.kext
 add-symbol-file /tmp/com.apple.AppleDiskImageController.sym
 enter the hexadecimal load addresses for these modules:
 com.apple.iokit.IOStorageFamily: 0x1ae3d000
 com.apple.AppleDiskImageController: 0x1b76c000

• You can now get lines numbers in the backtrace for
 IOHDIXController (instead of ?’s)

Slide 16

Reading the Panic File

Reading the first line

• Two possible messages

• panic(cpu 0 caller 0x0025C9A4): message

• Anticipated problem occurred!

• Unresolved kernel trap(cpu 1): message

• CPU or kernel noticed a problem and panicked!

• The “message” portion tells you quite a bit

Slide 17

Reading the Panic File

 panic(cpu 0 caller 0x0025C9A4): message

• The panic was “on purpose”

• Copy the message and google it

• You can find the panic location in the kernel source code

• Example from xnu-792/osfmk/kern/kalloc.c
if (KERN_SUCCESS != kmem_realloc(kalloc_map,
 (vm_offset_t)*addrp, old_size,
 (vm_offset_t *)&naddr, new_size)) {
 panic("krealloc: kmem_realloc");
 naddr = 0;
}

Slide 18

Reading the Panic File

 Unresolved kernel trap(cpu 1): message

• The messages will contain CPU specific info

• Intel numbers will be different from PowerPC

• Ex: Intel’s 14 = PowerPC’s 0x300

• The message wont tell you what led to panic

• Backtrace does that job

• The message explains what failed

• Ex: tried to access memory that doesn’t exist

• See docs on the CPU to find out what message means

Slide 19

PowerPC Trap Messages

Unknown
0x100 - System reset
0x200 - Machine check
0x300 - Data access
0x400 - Inst access
0x500 - Ext int
0x600 - Alignment
0x700 - Program

0x800 - Floating point
0x900 - Decrementer
0xA00 - n/a
0xB00 - n/a
0xC00 - System call
0xD00 - Trace
0xE00 - FP assist
0xF00 - Perf mon

Slide 20

PowerPC Trap Messages

0xF20 - VMX
0x1300 - Inst bkpnt
0x1400 - Sys mgmt
0x1600 - Altivec Assist
0x1700 - Thermal
Emulate

0x2000 - Run Mode/Trace
Signal Processor
Preemption
Context Switch
Shutdown
System Failure
INVALID EXCEPTION

Slide 21

Panic Log Examples

Kernel loadable modules in backtrace (with dependencies):
 com.apple.filesystems.udf(1.4.1)@0x23bf6000

Reformating the hard disk stopped this reoccurring panic

panic(cpu 0 caller 0x00245B34): BlockAllocateContig:
allocation overflow on "Scratch Disk"

Reformat the hard disk for sure!

Slide 22

Panic Log Examples

Kernel loadable modules in backtrace (with dependencies):
 com.apple.driver.AppleUSBEHCI(2.1.5)@0x2a83c000
 dependency: com.apple.iokit.IOUSBFamily(2.1.5)@0x2a7c2000
 dependency: com.apple.iokit.IOPCIFamily(1.4)@0x27d19000

USB EHCI is the USB hub and the panic probably
occurred when someone unplugged a USB device while it

was being mounted (I should report this to Apple)

panic(cpu 0 caller 0x000E51BC): bdevvp failed: open

No idea. I Googled “bdevvp” and found that it creates a vnode
for a block device. So probably a hard disk problem/bug.

Slide 23

Reading the Panic File

Only so much can be learned from the log

To get more info, you will have to use gdb!

• 2 machine debugging

• Core dump server

Slide 24

2 Machine Debugging

For reproducible panics

“Target” the machine that will crash

• Enable kernel debug mode

“Host” the computer that you sit at

• Install Dev Tools, Kernel SDK, xnu source code

Slide 25

Preparing Target

Enable kernel debug mode

• It is an Open Firmware setting

• sudo nvram boot-args=”debug=0x044”

• Reboot

• Power button behavior executes NMI

• Panics wait for connection

• Other debug settings for different settings

• See http://developer.apple.com

Slide 26

Preparing Target

To disable kernel debug mode

• You want to disable when done!

• Anyone can connect to a panicked machine (with 0x044)

• sudo nvram boot-args=””

• Reboot

Slide 27

Preparing Host

Must be an ADC member!

• connect.apple.com

Download latest Dev Tools and install
Download Kernel Debug SDK

• developer.apple.com/sdk/

• Download the OS version you are debugging

• Mount the disk image

Slide 28

Preparing Host

Download xnu source code
• developer.apple.com/darwin/
• Download the OS version you are debugging

• Darwin 8.3 = Mac OS X 10.4.3

• Darwin 8.3’s xnu is named xnu-792.6.22

• Unpack the .tar.gz
• sudo mkdir -p /SourceCache/xnu

 sudo ln -s ~/Desktop/xnu-<#> /SourceCache/xnu

Slide 29

Reach Out and Touch...

Target must be panicked

• To simulate a panic, press the power button

• Causes Non-Maskable Interrupt (NMI)

• Target will “freeze”

On Host

• gdb
 target remote-kdp
 attach 10.0.1.1

• You should now be “in”

replace with target’s IP

Slide 30

In alien territory

To leave
• detach
• NMI machines should return to normal

• Must restart panicked machines (?)
To look around

• add-symbol-file /Volumes/KernelDebugKit/mach_kernel
 source /Volumes/KernelDebugKit/kgmacros
 bt
 showallstacks

• Many more commands... (see developer.apple.com)

Slide 31

In alien territory

Email darwin-kernel -at- lists.apple.com

• Seriously. Those guys are more than willing to tell
you want commands you should run and what to
look for. You may even be lucky enough to have
someone post a patch that will fix the bug so you
don’t have to wait until the next OS X release.

• However, you should also post a bug

• https://bugreport.apple.com

Slide 32

Panic Dump Server

On targets:

• sudo nvram boot-args="debug=0x0d44 _panic_ip=10.0.1.1"

• Reboot

On server:

• mkdir /PanicDumps

 chmod ugo+w /PanicDumps
 pico /etc/xinetd.d/macosxkdump

Replace with IP of server

Slide 33

Panic Dump Server

service macosxkdump
{
 disable = no
 type = UNLISTED
 socket_type = dgram
 protocol = udp
 port = 1069
 user = nobody
 groups = yes
 server = /usr/libexec/kdumpd
 server_args = /PanicDumps
 wait = yes
}

Slide 34

Panic Dump Server

On server:

• kill -HUP `cat /var/run/xinetd.pid`

• Cores will be saved in /PanicDumps

• Names like: core-xnu-792-10.0.1.2-22c3aa51

• This file will contain a copy of kernel’s memory

• May contain sensitive stuff like passwords

Slide 35

Debugging a Core Dump

Run these commands
 gdb -c /PanicDumps/core-xnu-792-10.0.1.2-22c3aa51

• Core dump gdb uses different macros
• http://developer.apple.com/technotes/tn2004/tn2118.html

Slide 36

Building Custom Kernel

Download DarwinBuild

• http://opendarwin.org/projects/darwinbuild

• Build new kernel!

• darwinbuild -fetch xnu

• Modify source files

• darwinbuild xnu

• Go to lunch

• Magically creates custom kernel (universal even)

• Roots/xnu/xnu-<number>.root~1/mach_kernel

Slide 37

Building Custom Kernel

Replace your /mach_kernel with new one

• Make sure permissions are correct!!!

• root wheel 0644

• Have spare hard disk ready to boot from in case...

• You forgot to fix permissions

• Something else is wrong with it

Keep your Symbols/xnu/ stuff

• Use this for debugging future panics

Slide 38

DEMO!!!

Please fasten your seat belts

Slide 39

Questions & Answers
Any questions or answers?

