
© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Solaris 10
Filesystem Integrity Protection

Using Radmind

GIAC Unix Security Administrator (GCUX)
Practical Assignment
Version 3.0 - Option 1

G. Samuel Wilson, Jr.
21 March 2005

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

2

Table of Contents
Abstract 1
1 Introduction 2
2 Environment 4
3 Overview of Radmind 5
4 Step-by-Step Guide for Radmind on Solaris 7
4.1 Installing Radmind 7
4.1.1 Downloading Radmind 7
4.1.2 Building Radmind on the Server 8
4.1.3 Building Radmind on the Clients 10
4.2 Setting up Transport Level Security 11
4.2.1 Establishing a Certificate Authority 11
4.2.2 Creating Certificates 12
4.3 Automating Startup on Boot 13
4.3.1 Automating Startup Using the Service Management Facility 13
4.3.2 Automating Startup Using /etc/init.d 14
4.4 Radmind Operations 15
4.4.1 Using fsdiff to Create an Initial Negative Transcript 16
4.4.2 Radmind Session with Simplified Sample Base Load 17
4.4.2.1 Creating the Negative Transcript 18
4.4.2.2 Creating the Positive Transcript 19
4.4.2.3 Setting up the Command File 19
4.4.2.4 Constructing the Base Load 20
4.4.2.5 Transferring the Base Load to the Server 20
4.4.2.6 Validating the Base Load on the Server 21
4.4.2.7 Checking and Restoring the Client Filesystem 22
4.4.3 Overloads 29
4.5 Using Cron to Automate Filesystem Checking 32
4.6 Pitfalls to Avoid 32
5 Risks Associated with Using Radmind 34
6 Comparisons to Tripwire, Aide, and Samhain 37
7 Conclusions 38
Appendix A: Sample TLS Configuration File 39
Appendix B: Sample Radmind Service Manifest 44

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3

List of Figures
Figure 1: Detail of Radmind Download Page Showing SHA-1 Checksum Value 7
Figure 2: Jacksum Output of SHA-1 Checksum Value for radmind-1.5.0.tgz 8
Figure 3: Files in the Radmind Distribution 8
Figure 4: Selected Output During Build of Radmind 9
Figure 5: Additions to Filesystem Due to Installation of Radmind 10
Figure 6: Setting Up a TLS Certificate Authority for Radmind 11
Figure 7: TLS Certificate Creation 12
Figure 8: Bringing the Radmind Service Online 14
Figure 9: Radmind Startup Script 14
Figure 10: Testing the Radmind Startup Script 15
Figure 11: Initial Run of fsdiff 16
Figure 12: Generating Lines for a Negative Transcript 17
Figure 13: Sample Negative Transcript and Command Files 17
Figure 14: Contents of the /foo Directory 18
Figure 15: Negative Transcript for the Sample Session 19
Figure 16: Positive Transcript for the Sample Session 19
Figure 17: Command File for the First Example 20
Figure 18: Creating the Base Load for the First Example 20
Figure 19: Setting Up a Configuration File on the Server 20
Figure 20: Transferring Transcripts and Files to the Radmind Server 21
Figure 21: Actions on the Radmind Server to Verify and Store the Base Load 21
Figure 22: Setting Up a Client Command File on the Server 22
Figure 23: Script Used to "Break" the /foo Directory 22
Figure 24: Contents of the /foo Directory after Changes 23
Figure 25: Checking the State of the /foo Directory 24
Figure 26: Restoring the Client Filesystem 24
Figure 27: Contents of /foo Directory Following Restoration 25
Figure 28: Modified Transcripts and Command File 26
Figure 29: Contents of /foo Directory 26
Figure 30: Contents of /foo Directory After Compromise 27
Figure 31: Output of ktcheck, fsdiff, and lapply 28
Figure 32: Contents of /foo Directory After Restoration 28
Figure 33: Adding New Software to the Client 29
Figure 34: Changes on the Server to Accommodate the Overload 30
Figure 35: Checking and Restoring the Client with the Overload 31
Figure 36: Shell Script for Use with Cron 32
Figure 37: Use of Absolute and Relative Paths in Call to fsdiff 33
Figure 38: An Undetected Timestamp Change 35
Figure 39: A File Placed and Removed Prior to using fsdiff 36
Figure 40: The TLS Configuration File: openssl.cnf 39
Figure 41: A Radmind Service Manifest: radmind.xml 44

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

4

Abstract
This report is intended to provide information of value to security engineers who are
choosing among various solutions to protect their Solaris systems from undesirable
changes. In particular, the open-source product “Radmind” is described so it may be
effectively compared to other, perhaps more well-known, commercial and open-source
filesystem integrity applications.

Radmind seems to be most popular in the Mac OS X community, and much of the on-
line documentation is heavily Mac OS X flavored. Therefore, a second objective of this
report is to provide support for Solaris security administrators who choose to use
Radmind, in the form of a “step-by-step” guide for the installation, configuration, and
operation of Radmind on a Solaris 10 system. For this guide, a Solaris 10 server and
client were used, but the guide should also be useful for older versions of the Solaris
operating system or for other UNIX flavors.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

5

Introduction1
All security administrators must be concerned about unexpected and improper
changes to the systems for which they are responsible. For certain systems operated
by the US government, this concern is formally captured in the DCID 6/3. At all
protection levels, system developers are required to incorporate “features and
procedures” that protect the operating system and other security-relevant software from
unapproved changes.1 A filesystem integrity application is a valuable tool that can be a
large part of the response to this requirement. There are a number of both
commercial, off-the-shelf (COTS) products and open-source, “freeware,” applications
available to the system developer.2

Security engineers designing or developing systems for the US government also find
that government customers, especially within the defense and intelligence
communities, frequently specify the inclusion of COTS products only and exclude open-
source applications. In some situations, though, a customer’s budgetary restraints, the
features of a particular open-source application, or other considerations may result in a
contractor being directed or at least permitted to consider an open-source solution for
inclusion in the information system under development.

With care, open-source solutions can cut costs without necessarily increasing the risks
to the system. However, even where permission to use freeware products is granted,
there may continue to be a stipulation that the products originate from within the United
States. Permission to use software written by non-US citizens or controlled by entities
outside of the United States can sometimes be obtained. Doing so generally requires
additional paperwork to be filed and approved, which may pose problems to the
schedule and budget of the program.

Three fairly well known and popular open-source file integrity checkers are Tripwire,
AIDE, and Samhain. Tripwire is the “grand-daddy” among filesystem integrity
checkers,3 and although it has been very successfully incarnated as a commercial
product,4 there are still open-source versions available.5 A more modern product very
similar to the open-source version of Tripwire is AIDE (Advanced Intrusion Detection
Environment),6 which was discussed in depth in the “Securing UNIX” track course
materials.7 Another product, Samhain,8 was recently the subject of a SANS GCUX
practical.9

For each of these three, there is a barrier that may inhibit its use in a system being
designed or developed for a US government customer.

There are several open-source versions of Tripwire. However, version 1.2 is old (1994),
no longer supported, and hard to find. As of this writing, it may still be downloaded as
a part of YASSP.10 Version 1.3, the Academic Release Version of Tripwire, was not
truly free for use in commercial projects and seems in any case to have completely
disappeared from the web. More recently, the Tripwire Open Source Project has
released Linux versions under the General Public License, but the last update is also
several years old (2001).

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

6

The primary developers of AIDE and Samhain are citizens of Finland11 and Germany,12

respectively. The author intends them no disrespect whatsoever, but for the purposes
of this study, the non-US source of these products must be considered, simply
because they would be ineligible to be included in some US government information
systems without undergoing a lengthy approval process.

Radmind has been mentioned in several forums recently as a possible alternative to
Tripwire, AIDE, and Samhain.13, 14, 15 It is a product of the University of Michigan and is
still actively under development.16 Therefore, it is a reasonable alternative as an open-
source filesystem integrity checker where there is some concern about the age of the
product or the country of origin.

Fyodor, in the Tripwire entry on his list of "Top 75 Network Security Tools", says:

“UNIX users may also want to consider AIDE, which has been designed to
be a free Tripwire replacement. Or you may wish to investigate Radmind.”3

It is hoped that this report will provide some assistance to that investigation.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

7

Environment2
Although the environment and the particular network architecture are not of great
consequence to this investigation, the setup envisioned is that typical of GIAC
Enterprises as described in many of the papers submitted for the GCFW certification.
One or more servers can be accessed from the Internet or another untrusted network.
Private servers reside behind a firewall on a trusted network. Radmind client tools will
be used to protect the public server, while the Radmind server is on the private
network.

The Radmind server listens for TCP traffic from the clients on port 6662 by default. (It
can be configured to use a different port number.) The firewall must be configured to
open that port to TCP traffic inbound from a client to the Radmind server. The server
never initiates a TCP session with its clients, so no outbound port has to be opened.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

8

Overview of Radmind3
The University of Utah maintains a web page with documentation about Radmind that
includes the following definition.

“radmind (remote administration daemon) is a collection of Unix command
line tools that allow system administrators to manage file systems of
multiple machines...”17

Radmind works much like Tripwire, Aide, or Samhain in that it checks the attributes of
filesystem objects, compares those attributes to previously stored values, and flags any
differences. Radmind offers a significant additional feature: if any filesystem object
has been changed, it can restore that object back to its previous condition.

For directories, Radmind checks permissions, user ID, and group ID. For files,
Radmind checks permissions, user and group ID’s, modification time, and size. At the
operator’s discretion, it can also compute and compare a checksum for files. Radmind
also handles other filesystem object types; the complete list is given in the man page
for the fsdiff command.18

The Radmind executable runs on a central server. On the client hosts, Radmind
installs a set of command-line tools, which are used to communicate with the server
and to perform the filesystem checks and updates. Radmind can be compiled with
support for Transport Layer Security, which enables the server and clients to
authenticate each other and for the TCP traffic generated by Radmind to be encrypted.

Some of the important terms used frequently in all Radmind documentation are
defined here to allow the reader to become familiar with them before they are
encountered in the step-by-step guide below. A good introduction to Radmind can also
be found at the University of Utah’s web site, although it is oriented strongly toward
Mac OS X.19

A transcript is a list of filesystem objects, formatted in a particular way. Each object
occupies one line of the file. The contents of each line are: object type, directory path,
and a list of the object’s attributes. Lines starting with ‘#’ are comments. Blank lines
are allowed. Radmind transcripts have a .T filename extension.

If the transcript is an applicable transcript, each line may be preceded by a plus or
minus sign. Applicable transcripts contain a list of filesystem objects that have been
changed. The applicable transcript is the list of changes that must be made to restore
the client back to a previous state.

A transcript may also be a positive or negative. A positive transcript is a list of
filesystem objects and attributes that define the state to which the client will be
restored if any changes are made. A negative transcript is similar to an exclusion list,
in that directory contents will not be checked for directories on the negative transcript.
However, the directory itself must exist and its permissions, user ID, and group ID will

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

9

be checked.

A transcript together with the filesystem objects that are listed in it forms a loadset.
The loadset that fully describes the initial state of the client is called the base load.
When new software is installed on a client or it changes in some other way, the
security administrator may use Radmind to create a new loadset called an overload,
which is then used together with the base load. This action may be less time-
consuming than rebuilding an entire new base load for the client.

A set of transcripts is listed in a command file. By using both positive and negative
transcripts together in a command file, the security administrator can achieve good
control over just what actions Radmind will perform. Radmind command files have a
.K filename extension.

Five of the Radmind command line utilities will be demonstrated in the step-by-step
portion of this paper. They are fsdiff, ktcheck, lcreate, lapply, and
lcksum. A brief explanation of the purpose of each utility is given here.

The fsdiff command reads a command file to get a list of transcripts. It checks the
client’s filesystem against those transcripts. Discrepancies are written to standard
output but may be redirected to a file with the –o option. The fsdiff command may
also be used to create transcript files.

The ktcheck command compares the client’s command files and transcripts, as
stored on the Radmind server, to the local command files and transcripts. If there are
differences or if the local transcripts are not found, then they are retrieved from the
server.

The lcreate command uploads a loadset to the server.

If there are changes to the filesystem, lapply accepts an applicable transcript as
input and makes the indicated changes to restore the filesystem.

On the server, lcksum is used to verify that the attributes of uploaded files agree with
what is shown in the matching transcript, i.e., that the uploaded load set is consistent.

Additional commands not demonstrated in this paper are lmerge, lfdiff, and
twhich. These commands are used to merge loadsets, compare a single client file to
its counterpart on the server, and to show the transcript associated with a file. One
additional command, applefile, does not apply to Solaris clients.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

10

Step-by-Step Guide for Radmind on Solaris4
This section of the paper is intended to demonstrate the basic features of Radmind
while at the same time providing a guide that can be followed to set up and operate
Radmind.

What will not be done within the scope of this paper is to attempt to develop a
definitive negative or positive transcript or a base load for a Solaris 10 machine. In any
case, the “best” set of transcripts for a given machine at a given site may vary quite a
bit depending on the network architecture, the threat environment, and the needs of the
information system’s users. However, the development of a basic negative transcript
that could be used as a starting point by a Solaris 10 security administrator would be a
good subject for some future work.

Installing Radmind4.1
The download and installation of Radmind proved to be very straightforward for Solaris
10. No significant problems were encountered in making the executables from the
source files. The gcc compiler is required, but it is a part of the Solaris 10 operating
system, as is openssl. If those packages were not installed when the box was built,
the administrator should add them before building Radmind.

Downloading Radmind4.1.1
Radmind may be downloaded as radmind-1.5.0.tgz from the Research Systems
Unix Group of the University of Michigan.20 The SHA-1 hash value of the download is
published on the download page, as shown in Figure 1. It is important to check the
actual SHA-1 hash value of the file against this published value after the file has been
downloaded. This provides some assurance that the download has not been
compromised.

Figure 1: Detail of Radmind Download Page Showing SHA-1 Checksum Value

Unfortunately, Solaris 10 does not provide a SHA-1 utility. Jacksum21 was downloaded

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

11

and installed in order to check the SHA-1 value of the Radmind download. The output
from jacksum shown in Figure 2 affirms that actual SHA-1 hash matches the
published SHA-1 hash. It is unlikely the Radmind download files have been trojaned,
so the installation can proceed.

Figure 2: Jacksum Output of SHA-1 Checksum Value for radmind-1.5.0.tgz

SERVER:/tmp# jacksum -a sha1 radmind-1.5.0.tgz
ee685126ba38afa34649f1d15bc2dfaa5d0e6294 radmind-1.5.0.tgz

Figure 3 shows the set of files extracted from the download.

Figure 3: Files in the Radmind Distribution

SERVER:/usr/products/radmind-1.5.0# ls
COPYRIGHT base64.h daemon.c list.h pathcmp.h tls.c
Makefile.in ca.sh* fsdiff.c llist.c progress.c tls.h
OS_X/ cksum.c hardlink.c llist.h progress.h transcript.c
README cksum.h install-sh* lmerge.c ra.sh* transcript.h
SPEC code.c ktcheck.c lmerge.h radstat.c twhich.c
VERSION code.h lapply.c logname.c radstat.h update.c
aclocal.m4 command.c largefile.h logname.h retr.c update.h
applefile.c command.h lcksum.c lsort.c rmdirs.c version.c
applefile.h config.h.in lcreate.c man/ rmdirs.h wildcard.c
argcargv.c configure* lfdiff.c mkdirs.c root.c wildcard.h
argcargv.h connect.c libsnet/ mkdirs.h root.h
base64.c connect.h list.c pathcmp.c stor.c

Building Radmind on the Server4.1.2
The configure script is run to prepare to build the executable. There are several
relevant options for configure, but the only two which will be used here are the
following:

--with-authlevel=2

This option turns on TLS, which allows the Radmind clients and servers to authenticate
each other and to pass messages with encryption. The default is authlevel=0, which
does not use TLS. At authlevel=1, the client can verify that the server is authenticated
and the connection will be encrypted. Authlevel=2 provides the same protections as
authlevel=1 and adds the capability for the server to authenticate the clients.

-–with-server=SERVER

This option sets a default server. Specifying a default server here allows the operator
to avoid naming the server with the –h option on the Radmind command line tools.

Figure 4 shows partial output from the three steps to build Radmind: configure,

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

12

make, and make install. The make command outputs a few warnings but no
errors. The make install command issues an inconsequential error due to trying
to make a directory that already exists. No changes to the downloaded files were
needed to build Radmind on Solaris 10.

Figure 4: Selected Output During Build of Radmind

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

13

SERVER:/usr/products/radmind-1.5.0# ./configure -—with-authlevel=2 \
? -–with-server=SERVER
checking for gawk... no
checking for mawk... no
checking for nawk... nawk
checking for gcc... gcc
...
...[snip]...
...

SERVER:/usr/products/radmind-1.5.0# make
cd libsnet; make CC=gcc
./libtool—quiet—mode=compile \
gcc -c -Wall -Wmissing-prototypes -I. snet.c
building profiled snet.o
...
...[snip]...
...
gcc -Wall -Wmissing-prototypes -g -O2 -I./libsnet -I. \

-D_RADMIND_HOST=\”SERVER\” \
-D_RADMIND_AUTHLEVEL=2 \
-D_RADMIND_COMMANDFILE=\”/var/radmind/client/command.K\” \
-c ./ktcheck.c

./ktcheck.c: In function ‘createspecial’:

./ktcheck.c:123: warning: int format, pid_t arg (arg 5)

./ktcheck.c: In function ‘main’:

./ktcheck.c:569: warning: int format, pid_t arg (arg 5)
gcc -Wall -Wmissing-prototypes -g -O2 -I./libsnet -I. -c retr.c
retr.c: In function ‘retr’:
retr.c:124: warning: int format, pid_t arg (arg 5)
gcc -Wall -Wmissing-prototypes -g -O2 -I./libsnet -I. \

-c ./progress.c
...
...[snip]...
...

SERVER:/usr/products/radmind-1.5.0# make install
cd libsnet; make CC=gcc
mkdir tmp
mkdir tmp/man
...
...[snip]...
...
mkdir tmp
mkdir: Failed to make directory “tmp”; File exists
*** Error code 2 (ignored)
...
...[snip]...
...

After the completion of these commands the main Radmind executable has been
created in /usr/local/sbin, Radmind utilities have been created in
/usr/local/bin, and man pages for each of these executables have been placed in

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

14

/usr/local/man. The security administrator must set the ‘path’ and ‘manpath’
environment variables to include these locations. Changes to the filesystem made by
installing Radmind are shown in Figure 5.

Figure 5: Additions to Filesystem Due to Installation of Radmind

SERVER:/var/radmind# ls
cert/ client/ postapply/ preapply/

SERVER:/var/radmind# cd /usr/local/bin
SERVER:/usr/local/bin# ls
fsdiff* ktcheck* lcksum* lfdiff* ra.sh*
jacksum* lapply* lcreate* lmerge* twhich*

SERVER:/usr/local/bin# ls -al
total 1566
drwxr-xr-x 2 root root 512 Mar 11 14:35 ./
drwxr-xr-x 5 root root 512 Mar 11 14:35 ../
-rwxr-xr-x 1 root root 62152 Mar 11 14:35 fsdiff*
-rwxr-xr-x 1 root root 637 Mar 11 11:49 jacksum*
-rwxr-xr-x 1 root root 138932 Mar 11 14:35 ktcheck*
-rwxr-xr-x 1 root root 135352 Mar 11 14:35 lapply*
-rwxr-xr-x 1 root root 69324 Mar 11 14:35 lcksum*
-rwxr-xr-x 1 root root 127116 Mar 11 14:35 lcreate*
-rwxr-xr-x 1 root root 117772 Mar 11 14:35 lfdiff*
-rwxr-xr-x 1 root root 31956 Mar 11 14:35 lmerge*
-rwxr-xr-x 1 root root 9141 Mar 11 14:35 ra.sh*
-rwxr-xr-x 1 root root 59132 Mar 11 14:35 twhich*

SERVER:/usr/local/bin# cd /usr/local/sbin
SERVER:/usr/local/sbin# ls -al
total 356
drwxr-xr-x 2 root root 512 Mar 11 14:35 ./
drwxr-xr-x 5 root root 512 Mar 11 14:35 ../
-rwxr-xr-x 1 root root 170084 Mar 11 14:35 radmind*

Building Radmind on the Clients4.1.3
Radmind may be built independently on the clients, or the Radmind command line
tools may be pushed out to the clients after Radmind is built on the server, if the hosts
are of the same operating system. The radmind executable itself is not needed on
the clients. If the package is built independently on a client, then the client’s copy of
the radmind executable may be safely removed. Removing it improves the security
of the client because it cannot be exploited if it is not there.

Setting up Transport Level Security4.2
Before starting up Radmind, because it has been built with TLS authentication level 2
turned on, it is necessary to set up the certification authority on the server and establish

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

15

keys for the server and clients to use. If no TLS is to be used then this section should
be skipped. The instructions here follow very closely “Using TLS with Radmind,”
version 0.9.1, which can be found on the Radmind website.22

Establishing a Certificate Authority4.2.1
To begin the process of setting up a certificate authority, a sample configuration file,
openssl.cnf, was downloaded from the Radmind web site.23 This configuration file
was edited to set some defaults to the expected local values. For example,
Organization Name was set to “GIAC Enterprises” instead of “University of Michigan,”
but otherwise, no changes were necessary to allow the certificate authority and keys to
be created. The modified configuration file is shown in Appendix A: Sample TLS
Configuration File.

Figure 6: Setting Up a TLS Certificate Authority for Radmind

SERVER:/var/radmind# mkdir CA
SERVER:/var/radmind# mkdir CA/certs
SERVER:/var/radmind# mkdir CA/crl
SERVER:/var/radmind# mkdir CA/newcerts
SERVER:/var/radmind# mkdir CA/private
SERVER:/var/radmind# echo “01” > CA/serial
SERVER:/var/radmind# touch CA/index.txt
SERVER:/var/radmind# cd CA
SERVER:/var/radmind/CA# openssl req -new -x509 –days 400 -keyout \
? private/CAkey.pem -out ca.pem -config openssl.cnf
Generating a 1024 bit RSA private key
...............++++++
..................................++++++
writing new private key to ‘private/CAkey.pem’
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be
Incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a
DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value, If you enter ‘.’, the
field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [Texas]:
Locality Name (eg, city) []:Garland
Organization Name (eg, company) [GIAC Enterprises]:
Organizational Unit Name (eg, section) [Information
Security]:
Common Name (eg, YOUR name) []:GIAC Admin
Email Address []:admin@giacenterprises.com

The security administrator must enter a pass phrase, which is not echoed to the
screen. It should be long enough to be difficult to guess but something easily
remembered.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

16

The result of these steps will be the creation of two new files, the certificate authority's
certificate, ca.pem, and the associated key file, CAkey.pem.

Creating Certificates4.2.2
The next step is to create a certificate. The pass phrase, which is not echoed to the
screen, must match the one used above during the creation of the certificate authority.
(Otherwise, the openssl command will go into a segmentation fault and dump core.)
The Common Name used should be the domain name of the server.

Figure 7: TLS Certificate Creation

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

17

SERVER:/var/radmind/CA# openssl req -new -keyout
key.pem -out req.pem -days 360 -config openssl.cnf -nodes
Generating a 1024 bit RSA private key
..................++++++
....................................++++++
writing new private key to ‘key.pem’

You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [Texas]:
Locality Name (eg, city) []:Garland
Organization Name (eg, company) [GIAC Enterprises]:
Organizational Unit Name (eg, section) [Information Security]:
Common Name (eg, YOUR name) []:SERVER.giacenterprises.com
Email Address []:admin@giacenterprises.com

SERVER:/var/radmind/CA# cat req.pem key.pem > new-req.pem
SERVER:/var/radmind/CA# openssl ca -policy
policy_match -out out.pem -config openssl.cnf -infiles new-req.pem
Using configuration from openssl.cnf
3821:error:0E06D06C:configuration file
routines:NCONF_get_string:no
value:/builds/on10_74l3/usr/src/common/openssl/crypto/conf/conf_lib.c:3
29: group=CA_default
name=unique_subject
Enter pass phrase for /var/radmind/CA/private/CAkey.pem:
Check that the request matches the signature
Signature ok
The Subject’s Distinguished Name is as follows
countryName :PRINTABLE:’US’
stateOrProvinceName :PRINTABLE:’Texas’
localityName :PRINTABLE:’Garland’
organizationName :PRINTABLE:’GIAC Enterprises’
organizationalUnitName:PRINTABLE:’Information Security’
commonName :PRINTABLE:’SERVER.giacenterprises.com’
emailAddress :IA5STRING:’admin@giacenterprises.com
Certificate is to be certified until Mar 12 19:20:59 2006 GMT (365
days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

SERVER:/var/radmind/CA# cat out.pem key.pem > cert.pem
SERVER:/var/radmind/CA# rm req.pem new-req.pem out.pem

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

18

Following the execution of the above steps, new files /var/radmind/CA/cert.pem.
/var/radmind/CA/key.pem, and /var/radmind/CA/newcerts/01.pem will
have been created. The file /var/radmind/CA/index.txt will have been updated
with the Distinguished Name and some additional information.

To make TLS active, the certificate authority’s certificate, ca.pem, and the server’s
certificate, cert.pem, must be copied to /var/radmind/cert on the server. In
addition, a copy of the certificate authority’s certificate must be placed in
/var/radmind/cert on each client.

Since authlevel=2 has been chosen for this implementation of Radmind, client
certificates must also be created and propagated to the clients. Certificates for the
clients are created following the exact steps as in Figure 7 for the server, except that
each client’s own domain name is used in the Common Name field. Finally, for each
client, a copy of its own certificate must be placed in /var/radmind/cert on the
client.

Automating Startup on Boot4.3
For Radmind to be an effective service, it must be active whenever the server itself is
running. Either of two methods may be used to start the Radmind service at boot time.
The first, using /etc/init.d, is now obsolete, but it is included for the benefit of
those who may be installing Radmind on older Solaris systems.

Automating Startup Using the Service Management Facility4.3.1
The familiar init.d-style startup script (as shown in the next section) will work on a
Solaris 10 server. However, its use is discouraged because the Solaris 10 Service
Management Facility cannot handle services started from /etc/rcS.d,
/etc/rc2.d, or /etc/rc3.d as effectively as those which are set up properly with
svccfg and svcadm.

To ensure that the Radmind service starts at run-time, a service manifest must first be
created in a subdirectory of /var/svc/manifest/. In this example, since Radmind
is a network service and provides a security service to its clients, the service manifest
is created in /var/svc/manifest/network/security. The service manifest,
which is displayed as Figure 41 in Appendix A, consists of XML tags.

The next steps, as shown in Figure 8, are to import this definition into the services
repository, to test the startup and shutdown, and to bring the service online with the
service administrator. The enable –t subcommand to svcadm starts Radmind,
but only temporarily. Without the –t option, the enable subcommand will store the
necessary information so that Radmind is automatically started during subsequent
reboots.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

19

Figure 8: Bringing the Radmind Service Online

SERVER:/# svccfg import /var/svc/manifest/network/security
SERVER:/# svcs | grep radmind
SERVER:/# svcadm enable -t radmind
SERVER:/# svcs | grep radmind
online 13:41:31
svc:/network/security/radmind:default

SERVER:/# svcadm disable –t radmind
SERVER:/# svcs | grep radmind
SERVER:/# svcadm enable radmind
SERVER:/# svcs | grep radmind
online 13:41:56
svc:/network/security/radmind:default

SERVER:/# ps -ef | grep radmind
root 1615 1 0 13:41:57 ? 0:00 /usr/local/sbin/radmind -w

2

Automating Startup Using /etc/init.d4.3.2

The following material is included for the benefit of a security administrator who may
be installing Radmind using a Solaris 8 or 9 host as the server. This method of
enabling Radmind will work on Solaris 10 machines, but the methods in the previous
section are preferred. In this case, a startup script such as the following must be
created for Radmind. The –w 2 option is used to ensure Radmind is using TLS level
2 security. This script is stored in /etc/init.d/radmind on the server.

Figure 9: Radmind Startup Script

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

20

#! /bin/sh
#
start/stop the radmind server daemon

case “$1” in

‘start’)
Start the radmind server daemon
if [-f /usr/local/sbin/radmind]; then

echo “starting radmind server daemon”
/usr/local/sbin/radmind -w 2&

fi
 ;;

‘stop’)
Stop the radmind server daemon
PID=‘/usr/bin/ps -e -u 0 | /usr/bin/fgrep radmind | /usr/bin/awk ‘{print $1}’‘
if [! -z “$PID”] ; then

/usr/bin/kill ${PID} >/dev/null 2>&1
fi
;;

*)
echo “usage: /etc/init.d/radmind {start|stop}”
;;

esac

Figure 10 shows a test of the startup script. Afterwards, in order to have the Radmind
server restarted each time the machine is booted up, the startup script must be copied
to /etc/rc3.d.

Figure 10: Testing the Radmind Startup Script

SERVER:/etc/init.d# radmind start
starting radmind server daemon

SERVER:/etc/init.d# ps -ef | grep radmind
root 3939 1 0 15:02:30 ? 0:00 /usr/local/sbin/radmind -w

2

SERVER:/etc/init.d# radmind stop
SERVER:/etc/init.d# ps -ef | grep radmind
SERVER:/etc/init.d# cp radmind /etc/rc3.d/S99radmind

With this script in place in the /etc/rc3.d directory, each time the server is
rebooted, the Radmind service will be started.

Radmind Operations4.4
The normal sequence of actions to set up the Radmind client/server relationship starts

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

21

with the construction the base load on the client. The base load establishes the parts
of the client filesystem that will be checked for undesired change. The copy of the
base load stored on the server will be used to restore the client to its initial state, if a
filesystem object is added, deleted, or modified. The security administrator builds a
set of negative and positive transcripts, and then uses them as input to the fsdiff
utility to construct the base load.

When the security administrator is satisfied that the base load includes the correct set
of filesystem objects, he or she then uses the lcreate utility to copy the transcripts
and files of the base load to the server.

On the client, the Radmind utilities ktcheck, fsdiff, and lapply are used
together, either manually, or scripted and called from a cron table entry, to check the
client’s filesystem and to restore any files that have changed.

Using fsdiff to Create an Initial Negative Transcript4.4.1

The first step in constructing the base load is to create an empty command file.
Ultimately, the command file will contain a list of transcript files that are used to create,
check, and refresh the base load. At this point, however, the transcript files do not yet
exist, and the fsdiff command, which will be used to build them up, needs the
command file to exist.

In the sequence shown in Figure 11, the fsdiff command is run on the full
filesystem to get a feel for its behavior. The -% option tells fsdiff to issue
occasional progress reports to the console, rather than to spew out every filesystem
object touched. That full list of filesystem objects will be written to the output file
specified with the –o option. Unfortunately, this fsdiff run ends unexpectedly.

Figure 11: Initial Run of fsdiff

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

22

CLIENT:/var/radmind/client# touch client-cmd.K
CLIENT:/var/radmind/client# fsdiff –C –c sha1 –K client-cmd.K -% \
? -o client-base.T /
%00 /
%02 /.Xauthority
%05 /.cshrc
%08 /.dt
%09 /.dt/sessionlogs
%10 /.dtprofile
...
...[snip]...
...
%72 /opt
%73 /opt/SUNWits
%74 /opt/etc
%75 /platform
%76 /platform/ncri86pc
%78 /proc
/proc/0/ctl: Invalid argument

Investigation reveals that certain files in the /proc directory have a file permission
setting of 0400. That is, they can be written to by the root user, but not read. Similar
problems will occur for the /system directory. To avoid hitting these errors, it is
necessary to list /proc and /system in a negative transcript.

A transcript contains a list of filesystem objects. For a negative transcript, Radmind
will look at the attributes of each object but will not look into the contents of directories.
To generate properly formatted lines for the negative transcript, fsdiff can be used
with the –1 option, as shown in Figure 12.

Figure 12: Generating Lines for a Negative Transcript

CLIENT:/var/radmind/client# fsdiff -1 /proc
d /proc 0555 0 0

CLIENT:/var/radmind/client# fsdiff -1 /system
d /system 0755 0 0

The output of fsdiff –1 may be copied directly into the negative transcript file. The
name of the negative transcript file is then placed in the command file, with an ‘n’ to
designate it as a negative transcript. When these actions are taken and fsdiff is re-
run, it runs all the way through the filesystem with no further errors.

Figure 13: Sample Negative Transcript and Command Files

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

23

CLIENT:/var/radmind/client# cat client-neg.T
Example of negative transcript
d /proc 0555 0 0
d /system 0755 0 0

CLIENT:/var/radmind/client# cat client-cmd.K
Type File
n client-neg.T

CLIENT:/var/radmind/client# fsdiff –C –c sha1 –K client-cmd.K -% \
? -o client-base.T /
%00 /
%02 /.Xauthority
%05 /.cshrc
%08 /.dt
...
...[snip]...
...

The resulting output file, here named client-base.T, will contain all filesystem
objects except those contained in /proc and /system. Many of these filesystem objects
are volatile, such as system logs, or are not important enough to guard with Radmind.

Radmind Session with Simplified Sample Base Load4.4.2
The task of the security administrator at this point is to determine the set of filesystem
objects that are to be protected and those which will be ignored by Radmind, and to
fine tune the transcript files to achieve the desired protection. In order to understand
how to use Radmind effectively, it will be helpful to work through the session illustrated
by Figure 14 through Figure 20. This example serves as an illustration of how the
positive and negative transcript files work together with the fsdiff command. It also
constitutes a tutorial into how to create and store the base load on the Radmind server,
and then use it to check and restore the client filesystem.

For this sample session a directory /foo has been created on the client, which
contains some log files which are frequently updated. Radmind should ignore these
log files. The /foo directory also contains some static files, which ought to be
protected by Radmind. There is a subdirectory, /foo/bar, which also contains some
static files. There is an additional subdirectory /foo/tmp that contains a temporary
file, which Radmind does not need to check.

The directory contents under the path /foo are listed for future reference in Figure 14.
In addition, the contents of some of the files are displayed.

Figure 14: Contents of the /foo Directory

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

24

CLIENT:/var/radmind/client# ls -al /foo/*
-rw-r--r-- 1 root root 20 Mar 16 07:52 /foo/file1
-rw-r--r-- 1 root root 20 Mar 16 07:52 /foo/file2
-rw-r--r-- 1 root root 20 Mar 16 07:52 /foo/file3
-rw-r--r-- 1 root root 19 Mar 16 07:52 /foo/log1
-rw-r--r-- 1 root root 19 Mar 16 07:52 /foo/log2
-rw-r--r-- 1 root root 19 Mar 16 07:52 /foo/log3

/foo/bar:
total 10
drwxr-xr-x 2 root root 512 Mar 16 08:05 ./
drwxr-xr-x 4 root root 512 Mar 16 07:52 ../
-rw-r--r-- 1 root root 25 Mar 16 07:52 bfile1
-rw-r--r-- 1 root root 25 Mar 16 08:05 bfile2
-rw-r--r-- 1 root root 25 Mar 16 08:05 bfile3

/foo/tmp:
total 6
drwxr-xr-x 2 root root 512 Mar 16 07:52 ./
drwxr-xr-x 4 root root 512 Mar 16 07:52 ../
-rw-r--r-- 1 root root 25 Mar 16 07:52 tfile1

CLIENT:/var/radmind/client# cat /foo/file1
This is /foo/file1.

CLIENT:/var/radmind/client# cat /foo/log1
This is /foo/log1.

CLIENT:/var/radmind/client# cat /foo/bar/bfile1
This is /foo/bar/bfile1.

Creating the Negative Transcript4.4.2.1
Since there are files and directories to be ignored by Radmind, there must be a
negative transcript. The first line in the negative transcript shown in Figure 15 is an
entry for the root directory itself, which is included here only to save time by allowing
Radmind to skip processing for the majority of the client’s filesystem. For a realistic
application of Radmind, it would be unlikely for the security administrator to place the
root directory in the negative transcript. The other entry in this negative transcript is the
/foo directory itself. Since it is explicitly listed in this transcript, Radmind will check
for its existence and will check that its permissions haven’t changed, but won’t check
its contents.

Figure 15: Negative Transcript for the Sample Session

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

25

CLIENT:/var/radmind/client# cat foo-neg.T
Negative Transcript for /foo example
To save time, don't try to process the whole directory tree
d / 0755 0 0
/foo must exist, but because it contains a frequently changing set
of log files, it must stay in the negative transcript.
d /foo 0755 0 0

Creating the Positive Transcript4.4.2.2
The negative transcript in Figure 15 excludes all files from being checked by Radmind.
The files that should be checked must therefore be listed in a positive transcript. The
subdirectory /foo/bar is listed in the positive transcript shown in Figure 16, which
will also ensure that the files in the subdirectory are checked. The files directly under
/foo must be listed individually. Note that if Radmind is to protect these files by
monitoring a checksum or hash value, then the proper value for the file must appear in
the positive transcript. The form of the fsdiff command used to generate lines for
the positive transcript is fsdiff –1 –c sha1 filename.

Figure 16: Positive Transcript for the Sample Session

CLIENT:/var/radmind/client# cat foo-pos.T
Positive transcript for /foo example
/foo/bar contains static files which radmind will protect.
d /foo/bar 0755 0 0
/foo also contains some static files. Since /foo itself is in the
negative transcript, these files must be listed here individually.
f /foo/file1 0644 0 0 1110981147 20 1CTGgMeIxXN9MyN7+y4AdO3I1tA=
f /foo/file2 0644 0 0 1110981147 20 E6GYRjt3+DVdVc7F38Jx68AR8gg=
f /foo/file3 0644 0 0 1110981147 20 NzG/C1ZYFwMqL9ZE77wmmvAh7Do=

Setting up the Command File4.4.2.3
The command file is edited to contain the two transcript files and is listed in Figure 17.
If any filesystem object is listed in more than one transcript, the latest transcript
encountered takes precedence.

Figure 17: Command File for the First Example

CLIENT:/var/radmind/client# cat foo-cmd.K
Type Transcript
n foo-neg.T
p foo-pos.T

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

26

Constructing the Base Load4.4.2.4
Now that the negative and positive transcripts are in place, along with the command
file, the fsdiff command is used to create the base load transcript. The resulting
file is then displayed, showing that the three files from /foo/bar have been placed
in it, along with their attributes, including the SHA-1 checksum.

Figure 18: Creating the Base Load for the First Example

CLIENT:/var/radmind/client# fsdiff -C -c sha1 -K foo-cmd.K \
? -% -o foo-base.T /
%00 /
%33 /foo/bar/bfile2
%66 /foo/bar/bfile3
%00 /foo/file1
%100

CLIENT:/var/radmind/client# cat foo-base.T
f /foo/bar/bfile1 0644 0 0 1110981147 25 JuJ6+IvWXzpxt3UNR4H9ErgqS7c=
f /foo/bar/bfile2 0644 0 0 1110981910 25 tcME4l36b/jc5cAyxZugkO/KBDI=
f /foo/bar/bfile3 0644 0 0 1110981918 25 2ACxCDkfnxemmHmyWJlOgV2Y8qA=

Transferring the Base Load to the Server4.4.2.5
Before the Radmind tools on the client can communicate with the Radmind server, a
configuration file must be created on the server. The configuration file grants
permission for the client to initiate Radmind requests and defines the command file the
client will get from the server. The command file listed does not exist yet. It will be
created in a few steps, when it is needed. If there are additional clients, they are
added to this configuration file.

Figure 19: Setting Up a Configuration File on the Server

SERVER:/var/radmind# cat config
Client command file
------ ------------
CLIENT.giacenterprises.com client-foo.K

The command lcreate is used to communicate with the server. The –w 2 option
turns on TLS to secure the communication path by encrypting the TCP/IP traffic. The
client and server also authenticate each other using the certificates created earlier. A
negative transcript must be signaled to the server with the –N flag.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

27

Figure 20: Transferring Transcripts and Files to the Radmind Server

CLIENT:/var/radmind/client# lcreate -w 2 -h SERVER.giacenterprises.com \
? /var/radmind/client/foo-base.T
/var/radmind/client/foo-base.T: stored
/foo/bar/bfile1: stored
/foo/bar/bfile2: stored
/foo/bar/bfile3: stored

CLIENT:/var/radmind/client# lcreate -w 2 -h SERVER.giacenterprises.com \
? /var/radmind/client/foo-pos.T
/var/radmind/client/foo-pos.T: stored
/foo/file1: stored
/foo/file2: stored
/foo/file3: stored

CLIENT:/var/radmind/client# lcreate -w 2 -N -h \
? SERVER.giacenterprises.com \
? /var/radmind/client/foo-neg.T
/var/radmind/client/foo-neg.T: stored

Validating the Base Load on the Server4.4.2.6
The set of commands shown in Figure 21 are executed on the server rather than the
client. The lcreate command on the server copied the transcripts and files from the
client into a temporary Radmind directory on the server. Before they are moved to a
permanent location, they should be validated with the lcksum utility. After these
tests pass, all files and transcripts are moved up a level, out of the /tmp directory.

Figure 21: Actions on the Radmind Server to Verify and Store the Base Load

SERVER:/var/radmind/tmp/transcript# ls
foo-base.T foo-neg.T foo-pos.T
SERVER:/var/radmind/tmp/transcript# lcksum -c sha1 –n foo-base.T
foo-base.T: verified
SERVER:/var/radmind/tmp/transcript# lcksum -c sha1 –n foo-pos.T
foo-pos.T: verified
SERVER:/var/radmind/tmp/transcript# lcksum -c sha1 foo-neg.T
foo-neg.T: verified
SERVER:/var/radmind/tmp/transcript# mv /var/radmind/tmp/transcript/* \
? /var/radmind/transcript/
SERVER:/var/radmind/tmp/transcript# mv /var/radmind/tmp/file/* \
? /var/radmind/file/

The only remaining step is to edit the client’s command file on the server to match the
set of transcripts just brought over.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

28

Figure 22: Setting Up a Client Command File on the Server

SERVER:/var/radmind/command# cat client-foo.K
Type File
p foo-base.T
p foo-pos.T
n foo-neg.T

Checking and Restoring the Client Filesystem4.4.2.7
At this point, Radmind stands ready to check the client’s filesystem and to restore it if
unexpected changes are detected. It should be pointed out that Radmind provides
passive rather than active protection. It will not prevent filesystem changes, or detect
them as they happen. Only when Radmind is commanded to inspect the client’s
filesystem will it detect any changes. The security administrator may enter that
command manually, but more commonly, it is automated with a script and an entry in
the cron table.

For the purposes of this example, a script has been written which breaks the client
filesystem in various ways. This script, break.sh, shown in Figure 23, is used to
corrupt the contents of the /foo directory. It changes the contents of three of the
files, changes permissions on three other files, and removes three more. It also
removes the entire /tmp subdirectory, and finally adds a new subdirectory and two
new files. The purpose is to show how Radmind performs in detecting and correcting
these changes.

Figure 23: Script Used to "Break" the /foo Directory

#!/bin/sh
echo "This is BAD /foo/file1." > /foo/file1
echo "This is BAD /foo/log1." > /foo/log1
echo "This is BAD /foo/bar/bfile1." > /foo/bar/bfile1
chmod a+w /foo/file2 /foo/log2 /foo/bar/bfile2
rm /foo/file3
rm /foo/log3
rm /foo/bar/bfile3
rm -r /foo/tmp
touch /foo/file4
touch /foo/bar/bfile4
mkdir /foo/bad
touch /foo/bad/badfile

The contents of the /foo directory and the contents of the modified files following the
running of the break.sh script are shown in Figure 24. The state of the /foo
directory and its contents at this point may be compared to the previous state shown in

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

29

Figure 14.

Figure 24: Contents of the /foo Directory after Changes

CLIENT:/var/radmind/client# ./break.sh
CLIENT:/var/radmind/client# ls -al /foo/*
-rw-r--r-- 1 root root 24 Mar 16 08:20 /foo/file1
-rw-rw-rw- 1 root root 20 Mar 16 07:52 /foo/file2
-rw-r--r-- 1 root root 0 Mar 16 08:20 /foo/file4
-rw-r--r-- 1 root root 23 Mar 16 08:20 /foo/log1
-rw-rw-rw- 1 root root 19 Mar 16 07:52 /foo/log2

/foo/bad:
total 4
drwxr-xr-x 2 root root 512 Mar 16 08:20 ./
drwxr-xr-x 4 root root 512 Mar 16 08:20 ../
-rw-r--r-- 1 root root 0 Mar 16 08:20 badfile

/foo/bar:
total 8
drwxr-xr-x 2 root root 512 Mar 16 08:20 ./
drwxr-xr-x 4 root root 512 Mar 16 08:20 ../
-rw-r--r-- 1 root root 29 Mar 16 08:20 bfile1
-rw-rw-rw- 1 root root 25 Mar 16 08:05 bfile2
-rw-r--r-- 1 root root 0 Mar 16 08:20 bfile4

CLIENT:/var/radmind/client# cat /foo/file1
This is BAD /foo/file1.

CLIENT:/var/radmind/client# cat /foo/log1
This is BAD /foo/log1.

CLIENT:/var/radmind/client# cat /foo/bar/bfile1
This is BAD /foo/bar/bfile1.

The ktcheck utility is used to fetch the command file (see Figure 17) from the
Radmind server. Since the –K option is not used here to specify a particular file
name, the file is stored as the default command file, command.K. Next, the fsdiff
command is used, in a different way from previously, to check for differences between
the base load on the Radmind server and the equivalent filesystem objects on the
client.

The significant difference in how the fsdiff utility is used is the –A option. With
this option, the output represents edits to the filesystem that are needed to make it
match what it should be. A filesystem object preceded by a plus sign should be
downloaded from the server because it is missing or its contents have changed. An
object preceded by a minus sign is a new object that was not in the base load and
should be deleted. An object not preceded by either sign has had its permissions or
timestamp changed. Radmind will simply set those back to the original values without
downloading the original file from the base load.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

30

When the fsdiff command is used in this way, it shows that changes that should
be made to restore the filesystem, but it does not make those changes. To restore the
filesystem, this use of fsdiff must be combined with the lapply utility as shown
in Figure 26. A security administrator might use Radmind in this way just to generate
alerts that something unexpected has happened on the client, and choose not to
immediately restore the client. One reason for doing so would be to collect evidence or
determine what weakness led to a compromise.

Figure 25: Checking the State of the /foo Directory

CLIENT:/var/radmind/client# ktcheck -w 2 -c sha1 -h \
? SERVER.giacenterprises.com
/var/radmind/client/command.K: updated

CLIENT:/var/radmind/client# fsdiff -A -c sha1 /
foo-base.T:
+ f /foo/bar/bfile1 0644 0 0 1110981147 25 JuJ6+IvWXzpxt3UNR4H9ErgqS7c=
f /foo/bar/bfile2 0644 0 0 1110981910 25 tcME4l36b/jc5cAyxZugkO/KBDI=
+ f /foo/bar/bfile3 0644 0 0 1110981918 25 2ACxCDkfnxemmHmyWJlOgV2Y8qA=
- f /foo/bar/bfile4 0644 0 0 1110982801 0 2jmj7l5rSw0yVb/vlWAYkK/YBwk=
foo-pos.T:
+ f /foo/file1 0644 0 0 1110981147 20 1CTGgMeIxXN9MyN7+y4AdO3I1tA=
f /foo/file2 0644 0 0 1110981147 20 E6GYRjt3+DVdVc7F38Jx68AR8gg=
+ f /foo/file3 0644 0 0 1110981147 20 NzG/C1ZYFwMqL9ZE77wmmvAh7Do=

The output of fsdiff is piped into the lapply command, which performs the
actions necessary to restore the client filesystem, including downloading files from the
server.

Figure 26: Restoring the Client Filesystem

CLIENT:/var/radmind/client# fsdiff -A -c sha1 / | lapply -w 2 \
? -h SERVER.giacenterprises.com
/foo/bar/bfile1: created updating mode time
/foo/bar/bfile2: updating mode
/foo/bar/bfile3: created updating mode time
/foo/bar/bfile4: deleted
/foo/file1: created updating mode time
/foo/file2: updating mode
/foo/file3: created updating mode time

Figure 27 shows the contents of the /foo directory following the fsdiff/lapply
command shown in Figure 26. The results are perhaps not exactly what were hoped
for, but they are what should have been expected with a correct understanding of how
Radmind works. On the positive side, the files /foo/file1 and
/foo/bar/bfile1 have been restored to their original contents. The permissions on

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

31

/foo/file2 and /foo/bar/bfile2 have been reset to the original values. The files
/foo/file3 and /foo/bar/bfile3, which had been deleted, have now been
replaced. In addition, as expected, the log files have not been restored, nor has the
/foo/tmp subdirectory.

What may be a little surprising is that the subdirectory and files that were added during
the “compromise” were not deleted, with the single exception of /foo/bar/bfile4.
The reason they were not deleted is because /foo was placed in the negative
transcript. That placement serves as a signal to Radmind that the contents of /foo
are not, in general, security-relevant. The only files underneath /foo in the directory
tree which will be checked are those for which there is an overriding listing in the
positive transcript, as is the case for /foo/bar.

Figure 27: Contents of /foo Directory Following Restoration

CLIENT:/var/radmind/client# ls -al /foo/*
-rw-r--r-- 1 root root 20 Mar 16 07:52 /foo/file1
-rw-r--r-- 1 root root 20 Mar 16 07:52 /foo/file2
-rw-r--r-- 1 root root 20 Mar 16 07:52 /foo/file3
-rw-r--r-- 1 root root 0 Mar 16 08:20 /foo/file4
-rw-r--r-- 1 root root 23 Mar 16 08:20 /foo/log1
-rw-rw-rw- 1 root root 19 Mar 16 07:52 /foo/log2

/foo/bad:
total 4
drwxr-xr-x 2 root root 512 Mar 16 08:20 ./
drwxr-xr-x 4 root root 512 Mar 16 08:21 ../
-rw-r--r-- 1 root root 0 Mar 16 08:20 badfile

/foo/bar:
total 10
drwxr-xr-x 2 root root 512 Mar 16 08:21 ./
drwxr-xr-x 4 root root 512 Mar 16 08:21 ../
-rw-r--r-- 1 root root 25 Mar 16 07:52 bfile1
-rw-r--r-- 1 root root 25 Mar 16 08:05 bfile2
-rw-r--r-- 1 root root 25 Mar 16 08:05 bfile3

CLIENT:/var/radmind/client# cat /foo/file1
This is /foo/file1.
CLIENT:/var/radmind/client# cat /foo/log1
This is BAD /foo/log1.
CLIENT:/var/radmind/client# cat /foo/bar/bfile1
This is /foo/bar/bfile1.

The real problem in the session just completed is that the /foo directory contains a
mixture of volatile files and static files. If some of these static files were executables or
important system configuration files, then this directory might become an attractive
location for an attacker to stash a malicious file. Better results may be obtained by
arranging for the volatile log files to be in their own subdirectory, which allows the

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

32

directory containing the static files to be better protected.

The next few figures show the critical parts of a session similar to the session above,
but where the log files have been moved from /foo to /foo/logs. Figure 28
shows that the new negative transcript lists only those subdirectories whose contents
change regularly and which are very unlikely to contain executables or important
system files. The /foo directory itself, which now contains only static files, has been
moved from the negative transcript to the positive transcript. It is now not necessary to
also list /foo/bar in the positive transcript since it is in the directory tree under
/foo.

Figure 28: Modified Transcripts and Command File

CLIENT:/var/radmind/client# cat foo1-neg.T
Negative Transcript for /foo example
d / 0755 0 0
d /foo/logs 0755 0 0
d /foo/tmp 0755 0 0

CLIENT:/var/radmind/client# cat foo1-pos.T
Positive transcript for /foo example
d /foo 0755 0 0

CLIENT:/var/radmind/client# cat foo1-cmd.K
Type Transcript
n foo1-neg.T
p foo1-pos.T

For this second example, Figure 29 shows the initial contents of the /foo directory,
as they are at the time that the base load is created.

Figure 29: Contents of /foo Directory

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

33

CLIENT:/var/radmind/client# ls -al /foo/*
-rw-r--r-- 1 root root 20 Mar 17 16:42 /foo/file1
-rw-r--r-- 1 root root 20 Mar 17 16:42 /foo/file2
-rw-r--r-- 1 root root 20 Mar 17 16:42 /foo/file3

/foo/bar:
total 10
drwxr-xr-x 2 root root 512 Mar 17 16:52 ./
drwxr-xr-x 5 root root 512 Mar 17 16:42 ../
-rw-r--r-- 1 root root 25 Mar 17 16:42 bfile1
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile2
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile3

/foo/logs:
total 10
drwxr-xr-x 2 root root 512 Mar 17 16:42 ./
drwxr-xr-x 5 root root 512 Mar 17 16:42 ../
-rw-r--r-- 1 root root 19 Mar 17 16:42 log1
-rw-r--r-- 1 root root 19 Mar 17 16:42 log2
-rw-r--r-- 1 root root 19 Mar 17 16:42 log3

/foo/tmp:
total 6
drwxr-xr-x 2 root root 512 Mar 17 16:42 ./
drwxr-xr-x 5 root root 512 Mar 17 16:42 ../
-rw-r--r-- 1 root root 25 Mar 17 16:42 tfile1

CLIENT:/var/radmind/client# cat /foo/file1
This is /foo/file1.

Figure 30 shows the contents of the /foo directory after a “compromise” similar to
that in the early example. A new subdirectory has been added this time, /foo/bad,
with contents badfile.

Figure 30: Contents of /foo Directory After Compromise

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

34

CLIENT:/var/radmind/client# ls -al /foo/*
-rw-r--r-- 1 root root 24 Mar 17 16:59 /foo/file1
-rw-rw-rw- 1 root root 20 Mar 17 16:42 /foo/file2
-rw-r--r-- 1 root root 0 Mar 17 16:59 /foo/file4

/foo/bad:
total 4
drwxr-xr-x 2 root root 512 Mar 17 16:59 ./
drwxr-xr-x 5 root root 512 Mar 17 16:59 ../
-rw-r--r-- 1 root root 0 Mar 17 16:59 badfile

/foo/bar:
total 8
drwxr-xr-x 2 root root 512 Mar 17 16:59 ./
drwxr-xr-x 5 root root 512 Mar 17 16:59 ../
-rw-r--r-- 1 root root 29 Mar 17 16:59 bfile1
-rw-rw-rw- 1 root root 25 Mar 17 16:52 bfile2
-rw-r--r-- 1 root root 0 Mar 17 16:59 bfile4

/foo/logs:
total 8
drwxr-xr-x 2 root root 512 Mar 17 16:59 ./
drwxr-xr-x 5 root root 512 Mar 17 16:59 ../
-rw-r--r-- 1 root root 0 Mar 17 16:59 badlog
-rw-r--r-- 1 root root 28 Mar 17 16:59 log1
-rw-rw-rw- 1 root root 19 Mar 17 16:42 log2

CLIENT:/var/radmind/client# cat /foo/file1
This is BAD /foo/file1.
CLIENT:/var/radmind/client# cat /foo/bar/bfile1
This is BAD /foo/bar/bfile1.
CLIENT:/var/radmind/client# cat /foo/logs/log1
This is BAD /foo/logs/log1.

Figure 31 shows the output of the Radmind tools given the revised transcripts and
directory setup. In this example, the outcome is more in line with what might be
expected. The logs and tmp directories are in the negative transcript so their
contents are ignored. The new directory /foo/bad has been deleted, since /foo
itself is now in the positive transcript and its contents can be checked.

Figure 31: Output of ktcheck, fsdiff, and lapply

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

35

CLIENT:/var/radmind/client# ktcheck -w 2 -c sha1 –h \
? SERVER.giacenterprises.com
/var/radmind/client/command.K: updated

CLIENT:/var/radmind/client# fsdiff -A -c sha1 /
- d /foo/bad 0755 0 0
- f /foo/bad/badfile 0644 0 0 1111100356 0 2jmj7l5rSw0yVb/vlWAYkK/YBwk=
foo1-base.T:
+ f /foo/bar/bfile1 0644 0 0 1111099334 25 JuJ6+IvWXzpxt3UNR4H9ErgqS7c=
f /foo/bar/bfile2 0644 0 0 1111099920 25 tcME4l36b/jc5cAyxZugkO/KBDI=
+ f /foo/bar/bfile3 0644 0 0 1111099927 25 2ACxCDkfnxemmHmyWJlOgV2Y8qA=
- f /foo/bar/bfile4 0644 0 0 1111100356 0 2jmj7l5rSw0yVb/vlWAYkK/YBwk=
+ f /foo/file1 0644 0 0 1111099334 20 1CTGgMeIxXN9MyN7+y4AdO3I1tA=
f /foo/file2 0644 0 0 1111099334 20 E6GYRjt3+DVdVc7F38Jx68AR8gg=
+ f /foo/file3 0644 0 0 1111099334 20 NzG/C1ZYFwMqL9ZE77wmmvAh7Do=
- f /foo/file4 0644 0 0 1111100356 0 2jmj7l5rSw0yVb/vlWAYkK/YBwk=
foo1-neg.T:
d /foo/tmp 0755 0 0

CLIENT:/var/radmind/client# fsdiff -A -c sha1 / | lapply -w 2 \
? -h SERVER.giacenterprises.com
/foo/bad/badfile: deleted
/foo/bad: deleted
/foo/bar/bfile1: created updating mode time
/foo/bar/bfile2: updating mode
/foo/bar/bfile3: created updating mode time
/foo/bar/bfile4: deleted
/foo/file1: created updating mode time
/foo/file2: updating mode
/foo/file3: created updating mode time
/foo/file4: deleted
/foo/tmp: created updating

Finally, just for reference purposes, the contents of the /foo directory after the
Radmind are shown in Figure 32. This output can be compared to the original
directory contents in Figure 29.

Figure 32: Contents of /foo Directory After Restoration

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

36

CLIENT:/var/radmind/client# ls -al /foo/*
-rw-r--r-- 1 root root 20 Mar 17 16:42 /foo/file1
-rw-r--r-- 1 root root 20 Mar 17 16:42 /foo/file2
-rw-r--r-- 1 root root 20 Mar 17 16:42 /foo/file3

/foo/bar:
total 10
drwxr-xr-x 2 root root 512 Mar 17 17:01 ./
drwxr-xr-x 5 root root 512 Mar 17 17:01 ../
-rw-r--r-- 1 root root 25 Mar 17 16:42 bfile1
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile2
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile3

/foo/logs:
total 8
drwxr-xr-x 2 root root 512 Mar 17 16:59 ./
drwxr-xr-x 5 root root 512 Mar 17 17:01 ../
-rw-r--r-- 1 root root 0 Mar 17 16:59 badlog
-rw-r--r-- 1 root root 28 Mar 17 16:59 log1
-rw-rw-rw- 1 root root 19 Mar 17 16:42 log2

/foo/tmp:
total 4
drwxr-xr-x 2 root root 512 Mar 17 17:01 ./
drwxr-xr-x 5 root root 512 Mar 17 17:01 ../

CLIENT:/var/radmind/client# cat /foo/file1
This is /foo/file1.

CLIENT:/var/radmind/client# cat /foo/bar/bfile1
This is /foo/bar/bfile1.

CLIENT:/var/radmind/client# cat /foo/logs/log1
This is BAD /foo/logs/log1.

Overloads4.4.3
The question arises as to how to deal with intended and approved changes and
updates for a client being protected by Radmind. One way to handle these is with an
overload. An overload is copied to the server just as the original base load was and it
works with the base load to maintain the client in the newly defined state. Multiple
overloads can be set up. If they start to get unwieldy, however, there is a tool,
lmerge, to merge them and create a new, unified, base load, without starting over from
scratch.

When new software is added to the client, it is a good idea first to ensure that the
system is clean. The Radmind tools run for this sample session show that no updates
are necessary. Then a subdirectory, /new, and file, newfile, are added to the
/foo directory, representing the installed software. The tools fsdiff and
lcreate are used to make a new loadset, new.T, and to propagate it to the server

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

37

as an overload.

Figure 33: Adding New Software to the Client

CLIENT:/foo/bar# fsdiff -A -c sha1 /
CLIENT:/foo/bar# ktcheck -w 2 -c sha1 –h SERVER.giacenterprises.com
No updates needed

CLIENT:/foo/bar# fsdiff -A -c sha1 / | lapply -w 2 \
? –h SERVER.giacenterprises.com

CLIENT:/foo/bar# cd ..
CLIENT:/foo# mkdir new
CLIENT:/foo# cd new
CLIENT:/foo/new# echo "This is a new file" > newfile
CLIENT:/foo/new# fsdiff -C -c sha1 –o /var/radmind/client/new.T /

CLIENT:/foo/new# more /var/radmind/client/new.T
d /foo/new 0755 0 0
f /foo/new/newfile 0644 0 0 1111263000 19
A48Q+eMSAkUbCTFj6B4G+6wMbzo=

CLIENT:/foo/new# lcreate -w 2 -h SERVER.giacenterprises.com \
? /var/radmind/client/new.T
/var/radmind/client/new.T: stored
/foo/new/newfile: stored

On the server, the process is very much the same as it was for the original base load.
The security administrator must remember to update the command file for this client.
That change is shown at the bottom of Figure 34. The transcript for the overload,
new.T, is inserted into the command file with the transcripts that already existed as
part of the base load.

Figure 34: Changes on the Server to Accommodate the Overload

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

38

SERVER:/var/radmind/tmp# ls -al *
file:
total 6
drwxr-x--- 3 root root 512 Mar 19 14:11 ./
drwxr-x--- 4 root root 512 Mar 12 12:34 ../
drwxr-xr-x 3 root root 512 Mar 19 14:11 new.T/

transcript:
total 6
drwxr-x--- 2 root root 512 Mar 19 14:11 ./
drwxr-x--- 4 root root 512 Mar 12 12:34 ../
-rw-r--r-- 1 root root 162 Mar 19 14:11 new.T
SERVER:/var/radmind/tmp/transcript# lcksum -c sha1 new.T
new.T: verified
SERVER:/var/radmind/tmp/transcript# mv /var/radmind/tmp/transcript/* \
? /var/radmind/transcript/
SERVER:/var/radmind/tmp/transcript# mv /var/radmind/tmp/file/* \
? /var/radmind/file/

SERVER:/var/radmind/command# cat client-foo1.K
Type File
p foo1-base.T
p foo1-pos.T
p new.T
n foo1-neg.T

Figure 35 shows a session on the client where the new directory is inadvertently
removed. The fsdiff command shows the changes and lapply restores the new
subdirectory and file. Once the overload has been created on the server, there is no
difference on the client to the way checking and restoration was done prior to the
overload.

Figure 35: Checking and Restoring the Client with the Overload

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

39

CLIENT:/foo/new# ktcheck -w 2 -c sha1 –h SERVER.giacenterprises.com
/var/radmind/client/command.K: updated

CLIENT:/foo/new# cd ..
CLIENT:/foo# rm -r new
CLIENT:/foo# fsdiff -A -c sha1 /
new.T:
d /foo/new 0755 0 0
+ f /foo/new/newfile 0644 0 0 1111263000 19
A48Q+eMSAkUbCTFj6B4G+6wMbzo=

CLIENT:/foo# fsdiff -A -c sha1 / | lapply -w 2 –h \
? SERVER.giacenterprises.com
/foo/new: created updating
/foo/new/newfile: created updating mode time

CLIENT:/foo# ls -al *
-rw-r--r-- 1 root root 20 Mar 17 16:42 file1
-rw-r--r-- 1 root root 20 Mar 17 16:42 file2
-rw-r--r-- 1 root root 20 Mar 17 16:42 file3

bar:
total 10
drwxr-xr-x 2 root root 512 Mar 19 14:07 ./
drwxr-xr-x 6 root root 512 Mar 19 14:16 ../
-rw-r--r-- 1 root root 25 Mar 17 16:42 bfile1
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile2
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile3

logs:
total 8
drwxr-xr-x 2 root root 512 Mar 17 16:59 ./
drwxr-xr-x 6 root root 512 Mar 19 14:16 ../
-rw-r--r-- 1 root root 28 Mar 17 16:59 log1
-rw-rw-rw- 1 root root 19 Mar 17 16:42 log2

new:
total 6
drwxr-xr-x 2 root root 512 Mar 19 14:16 ./
drwxr-xr-x 6 root root 512 Mar 19 14:16 ../
-rw-r--r-- 1 root root 19 Mar 19 14:10 newfile

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

40

Using Cron to Automate Filesystem Checking4.5
Figure 36 shows a quick script that could be called from a crontab entry to automate
the process of checking and restoring the client’s filesystem. The script also produces
a time-stamped log file which could be picked up and used for alerts or auditing. The
script is stored at /usr/local/bin/radmind.sh.

Figure 36: Shell Script for Use with Cron

#!/bin/sh
#
Make a directory for Radmind logs
mkdir -p /var/radmind/logs
Get the current date and time and create a time stamped log file
logfile=/var/radmind/logs/radmind_`/usr/bin/date '+%y%m%d-%H%M%S'`.log
Run ktcheck
echo "ktcheck: " > $logfile
/usr/local/bin/ktcheck -w 2 -c sha1 -h SERVER.giacenterprises.com >>
$logfile
Run fsdiff in output-only mode
echo "fsdiff: " >> $logfile
/usr/local/bin/fsdiff -A -c sha1 –K
Run fsdiff again, piping the results to lapply
/var/radmind/client/command.K / >> $logfile
echo "fsdiff | lapply:" >> $logfile
/usr/local/bin/fsdiff -A -c sha1 –K /var/radmind/client/command.K / |

/usr/local/bin/lapply –w 2 -h SERVER.giacenterprises.com >> $logfile

Pitfalls to Avoid4.6
Radmind makes a copy of the client filesystem on the server. By default, this copy is
stored within the /var partition, although the Radmind directory path can be
configured to be something else. Careful planning needs to be done when setting up
the server to ensure that sufficient space exists for all of the files that will be copied
over.

Transcripts must be in alphabetical order, as per the following from the fsdiff man
page.

Transcripts are sorted alphabetically, depth first, and case sensitively. This
means subdirectories have precedence over files in the same directory:
lexically, "/" has highest precedence. So the file /etc/passwd comes
before /etc.old even though "." normally comes before "/", and
/Library would come before /dev as capitalized characters are higher
in precedence than lowercase ones. Both of the previous two directories
would come before /etc.old.18

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

41

Generally, Radmind will complain and give an error message that points out the first
line it thinks is misplaced, which may or may not be the line that actually needs to be
fixed. It can be difficult to get a long transcript into the correct order.

Lines in command (.K) and transcript (.T) files must be terminated with a newline. A
“line too long” error message will be generated otherwise.

When using fsdiff to generate lines to be copied to a transcript file, the security
administrator should pay attention to relative versus absolute paths. The second call in
Figure 37 is probably not what is desired.

Figure 37: Use of Absolute and Relative Paths in Call to fsdiff

CLIENT:/# fsdiff –1 /foo/bar
d /foo/bar 0755 0 0
CLIENT:/# cd /foo
CLIENT:/foo# fsdiff –1 bar
d bar 0755 0 0

If a mistake is made and the base load is not delivered completely or correctly to
/var/radmind/tmp/ on the server, the commands on the client cannot simply be
redone without first doing some cleanup on the server. The files and templates in
/var/radmind/tmp/file and /var/radmind/tmp/template must be removed
first. Cleaning the /tmp directory on failure is listed as a potential improvement for
Radmind version 1.6.16

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

42

Risks Associated with Using Radmind5
The primary strength of Radmind lays not so much in its filesystem integrity checking
capabilities, but in its ability to automatically restore a modified filesystem to a previous
good state. However, that restoration will destroy most if not all of the evidence as to
how the modifications happened in the first place. If there was an attack, nothing will
be learned as to how to prevent a reoccurrence or what the attacker may have done
while on the system. The security administrator must be prepared to weigh the
benefits of the automated system restoration against the loss of potentially valuable
forensic data. A way to handle this situation might be to use fsdiff to detect
changes, and before correcting those changes with lapply, using Radmind tools to
create a loadset matching the compromised system. That loadset could then be
applied to a test machine and inspected.

The Radmind download is protected with a SHA-1 hash value, which is published on
the Radmind download site.20 This provides good confidence that the download is the
genuine version. However, a determined attacker could both replace the download
with a trojaned version and simultaneously hack the web page to substitute in the new
SHA-1 value. Simply publishing a second, different, hash value for each downloadable
file would provide a greater level of assurance. Digital signatures of the hash values
would also provide greater assurance.

SHA-1 is one of the more widely used checksums24 and, in fact, is used in most of the
examples in the Radmind documentation. For that reason it may be the most likely
choice when a security administrator is getting things set up. Recently published
reports claim that SHA-1 has been broken.25 At this time, the risk of actual
compromise based on the published work would seem to be very slight.26 However, as
time passes compromise will become easier. A careful security administrator should
investigate the other checksum choices available with Radmind.

For any application, even a security application, installed on an information system
there is a risk that the application itself will become a means of compromise.
Radmind is new enough, and not yet widespread enough throughout the Unix
community, that it may not yet have been thoroughly checked out for bugs and
vulnerabilities. A search of bugtraq27 revealed no published vulnerabilities. It is likely
that a rise in popularity of Radmind would lead to vulnerabilities being discovered. A
careful security administrator would need to pay close attention to this possibility.

A related risk is that an attacker might recognize the Radmind tools and would
compromise or replace them with versions that would ignore the attacker’s other
changes. This could lead to an appearance that nothing is wrong when in fact there is
a big problem. A security administrator should have measures in place to occasionally
check the filesystem apart from the Radmind tools, or to check the validity of the tools
themselves.

The firewall, if any, between the clients and the server must have port 6662 open for
TCP/IP sessions initiated by the clients. This might provide an entry point to the server

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

43

if an attacker compromises one of the clients. The communications channel could be
secured with SSH or a VPN tunnel to diminish the probability of this event.

Radmind will delete files that it thinks do not properly belong to the client filesystem.
This action may wipe out newly installed software or other desired changes if the
system administrator forgot to update the load files on the server to reflect the update.
Written procedures need to be in place to ensure that a Radmind overload is always
created and written to the server when any changes are made to a client machine.

Special care needs to be taken to inspect directories that are in the negative transcript.
Radmind does not look into these directories and will not care if (possibly malicious)
files have been added to them.

The timestamp on directories, even if they are in the positive transcript, can be
changed without Radmind caring. Figure 38 shows a session where a file and a
directory both have their timestamps altered without any other change to their contents.
The fsdiff utility flags the change to the file but ignores the change to the
directory. Naturally, lapply also restores the files but fails to restore the directory.

Figure 38: An Undetected Timestamp Change

CLIENT:/foo# touch -t 01010101 file1
CLIENT:/foo# touch -t 01010101 bar
CLIENT:/foo# ls -al
total 16
drwxr-xr-x 5 root root 512 Mar 19 14:00 ./
drwxr-xr-x 35 root root 1024 Mar 17 16:43 ../
drwxr-xr-x 2 root root 512 Jan 1 01:01 bar/
-rw-r--r-- 1 root root 20 Jan 1 01:01 file1
-rw-r--r-- 1 root root 20 Mar 17 16:42 file2
-rw-r--r-- 1 root root 20 Mar 17 16:42 file3
drwxr-xr-x 2 root root 512 Mar 17 16:59 logs/
drwxr-xr-x 2 root root 512 Mar 17 17:01 tmp/

CLIENT:/foo# fsdiff -A -c sha1 /
f /foo/file1 0644 0 0 1111099334 20 1CTGgMeIxXN9MyN7+y4AdO3I1tA=

CLIENT:/foo# fsdiff -A -c sha1 / | lapply -w 2 –h \
? SERVER.giacenterprises.com
/foo/file1: updating time

An implication of the problem shown in Figure 38 is that an attacker who became
aware of the Radmind update times could place files temporarily, move or delete them
before the next update, and thus escape detection. Figure 39 shows a session in
which a file is placed in a directory and then later removed. Another file that belongs in
the directory is temporarily removed and then replaced. Even though the directory is in
the positive transcript, fsdiff is silent and does not recognize that any changes
have taken place.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

44

Figure 39: A File Placed and Removed Prior to using fsdiff

CLIENT:/foo/bar# ls
bfile1 bfile2 bfile3

CLIENT:/foo/bar# mv bfile1 /tmp
CLIENT:/foo/bar# touch badfile
CLIENT:/foo/bar# ls -al
total 8
drwxr-xr-x 2 root root 512 Mar 19 14:07 ./
drwxr-xr-x 5 root root 512 Mar 19 14:00 ../
-rw-r--r-- 1 root root 0 Mar 19 14:07 badfile
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile2
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile3

CLIENT:/foo/bar# mv /tmp/bfile1 .
CLIENT:/foo/bar# ls
badfile bfile1 bfile2 bfile3

CLIENT:/foo/bar# rm badfile
CLIENT:/foo/bar# ls -al
total 10
drwxr-xr-x 2 root root 512 Mar 19 14:07 ./
drwxr-xr-x 5 root root 512 Mar 19 14:00 ../
-rw-r--r-- 1 root root 25 Mar 17 16:42 bfile1
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile2
-rw-r--r-- 1 root root 25 Mar 17 16:52 bfile3

CLIENT:/foo/bar# fsdiff -A -c sha1 /
CLIENT:/foo/bar#

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

45

Comparisons to Tripwire, Aide, and Samhain6
As a tripwire-style security tool, Radmind is somewhat less flexible and powerful than
Tripwire, AIDE, or Samhain. All three of these tools will check not only the ‘mtime,’
i.e., the last time that the contents of the file were modified but will check ‘ctime’ and
‘atime’ as well. Radmind only checks ‘mtime.’ ‘ctime’ is the last time at which a
change was made to an object’s inode. ‘atime’ is the last time at which the file was
accessed. The lack of these checks could cause Radmind to miss a change that
might signify some illicit activity.

Tripwire and AIDE both allow multiple checksums to be computed and checked for a
given file. While it is difficult - but possible - for an attacker to produce a malicious file
that matches another file’s checksum; to attempt to do so for two different checksums
at once would generally be a very poor use of time. Therefore, the deterrent effect of
the multiple checksums is quite high.

A much more significant strength for Tripwire, AIDE, and Samhain as compared to
Radmind is that all three permit the security administrator much more granularity in
controlling what objects to include or exclude, and in what attributes to check for those
objects. With Radmind, an object is in either a negative transcript or a positive
transcript. (If a file is not explicitly listed or is not in the directory tree of a directory that
is explicitly listed, then it is implicitly in the positive transcript.) Objects in a negative
transcript are checked in just one way; objects in a positive transcript are checked in
just one (different) way.

As a particular example, all three of the alternative programs have a setting that allows
log files to be watched. An alert is issued if the log file suddenly shrinks in size, which
might happen if an attacker removes the lines that show his or her activities. It is
difficult to see how this kind of alerting could be done with Radmind. In addition, it
would not be desirable for Radmind to replace a modified log file with an older version
of itself.

For those who want to explore the alternatives more thoroughly, an online manual for
AIDE is found at http://www.cs.tut.fi/~rammer/aide/manual.html,28 and for Samhain at
http://la-samhna.de/samhain/manual/.29 There is an online manual for Tripwire at
http://www.cosmic-ray.org/miscfiles/idsl_1_3.pdf,30 however, it is for version 1.3 for
Linux. Rainer Wichmann has produced a comparison of several integrity scanners (not
including Radmind) at http://la-samhna.de/library/scanners.html.31

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

46

Conclusions7
If a COTS product is not practical, and where using an open-source product of non-US
origin is disallowed or discouraged, Radmind should be considered as an adequate
alternative to provide filesystem integrity checking. Where those conditions do not
apply, it would be difficult to recommend Radmind over the other programs discussed
in this report. However, Radmind is still under development, and as time passes, it
may well reach the point where it can compete on a level playing field with those other
products. Its main strength lies in its capability to automatically restore a modified
filesystem to a known good state as soon as the modification is detected. For some
information systems with high availability requirements, this automation may be very
valuable and help keep the downtime of a system to a minimum.

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

47

Appendix A: Sample TLS Configuration File
Figure 40 shows the file used to configure TSL for this report. This file was
downloaded from the Radmind website23 and was tailored (slightly) for the current test
setup.

Figure 40: The TLS Configuration File: openssl.cnf

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

48

#
version 0.9.1
#

This definition stops the following lines choking if HOME isn't
defined.
HOME = .
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca' and 'req'.
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = /var/radmind/CA # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/CAkey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Extensions to add to a CRL.
Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # which md to use.
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_match

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

49

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

50

Appendix B: Sample Radmind Service Manifest
The following is a sample service manifest created by the author, based on examples
of other service manifests. It enables Radmind on a Solaris 10 host. It is not
necessarily a complete, well-constructed manifest, but it should serve as a good
starting point.

Figure 41: A Radmind Service Manifest: radmind.xml

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

51

<?xml version=’1.0’?>
<!DOCTYPE service_bundle SYSTEM
‘/usr/share/lib/xml/dtd/service_bundle.dtd.1’>
<!--

ident “@(#)radmind.xml 1.0 05/03/05 SMI”

Service manifest for the radmind server daemon
-->

<service_bundle type=’manifest’ name=’radmind’>

<service
name=’network/security/radmind’
type=’service’
version=’1’>

<create_default_instance enabled=’false’ />

<single_instance/>

<dependency
name=’network’
grouping=’require_all’
restart_on=’none’
type=’service’>
<service_fmri value=’svc:/network/initial’ />

</dependency>

<dependent
name=’radmind_multi-user-server’
grouping=’optional_all’
restart_on=’none’>
<service_fmri value=’svc:/milestone/multi-user-server’ />

</dependent>

<exec_method
type=’method’
name=’start’
exec=’/usr/local/sbin/radmind –w 2’
timeout_seconds=’30’>

</exec_method>

<exec_method
type=’method’
name=’stop’
exec=’:kill’
timeout_seconds=’60’>

</exec_method>

<stability value=’Standard’ />

<template>
<common_name>

<loctext xml:lang=’C’>
Radmind, a remote administration server

</loctext>
</common_name>
<documentation>

<manpage title=’radmind’ section=’8’
manpath=’/usr/local/man’ />

</documentation>
</template>

</service>

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

52

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

53

References
1 United States, Director of Central Intelligence Directive 6/3. Protecting Sensitive Compartmented

Information Within Information Systems – Manual (Industry Annex). 1 August 2000 (Updated 20 April
2004).

2 Cuff, Andy, Computer Network Defence LTD. File Integrity Checkers. 2004.
http://www.networkintrusion.co.uk/integrity.htm. (19 March 2005).

3 Fyodor. Top 75 Network Security Tools. May 2003. http://www.insecure.org/tools.html. (19 March
2005).

4 Tripwire, Inc. Change Auditing Solutions. 2005. http://www.tripwire.com/. (19 March 2005).
5 Tripwire Open Source Project. http://www.tripwire.org/index.html. (19 March 2005).
6 Lehti, Rami. AIDE – Advanced Intrusion Detection Environment.

http://www.cs.tut.fi/~rammer/aide.html. (19 March 2005).
7 SANS Institute. Track 6 – Securing Unix/Linux: Unix/Linux Security Tools. Volume 6.2. Sans

Press, 2004.
8 Samhain Labs. The Samhain File Integrity/Intrusion Detection System. http://la-

samhna.de/samhain/. (19 March 2005).
9 Holmes, Winston. Security Aspects of a Samhain Client/Server Installation to Protect a Solaris Web

Server. 19 September 2004. http://www.giac.org/certified_professionals/practicals/gcux/0261.php.
(19 March 2005).

10 Chouanard, Jean. YASSP – Yet Another Solaris Security Package. 19 November 2000.
http://www.yassp.org/. (19 March 2005).

11 Lehti, Rami. Rami’s Homepage. 24 August 1998. http://www.cs.tut.fi/~rammer/. (19 March 2005).
12 Samhain Labs. About Us. http://la-samhna.de/about.html. (19 March 2005).
13 Red Hat, Inc. Taroon-List Archives. March 2004. https://www.redhat.com/archives/taroon-list/2004-

March/msg00293.html. (19 March 2005).
14 Triangle Linux Users Group. Archived Weblog Entry. 10 August 2003.

http://www.trilug.org/~amr/bx/blosxom.cgi/2003/08/10. (19 March 2005).
15 Freebsd.org. Freebsd-stable Archives. October 2004. http://lists.freebsd.org/pipermail/freebsd-

stable/2004-October/008940.html. (19 March 2005).
16 Research Systems Unix Group, University of Michigan. Radmind Roadmap. 18 March 2005.

http://rsug.itd.umich.edu/software/radmind/roadmap.html. (20 March 2005).
17 University of Utah. Radmind Tips. 22 November 2004.

http://www.macos.utah.edu/Documentation/radmind/intro.html. (20 March 2005).
18 Research Systems Unix Group, University of Michigan. fsdiff man page.

http://rsug.itd.umich.edu/software/radmind/man/fsdiff.1.html. (20 March 2005).
19 Student Computing Labs, University of Utah. Radmind Mac OS X File System Management Case

Study. http://www.macos.utah.edu/OSX_OnCampus/UofU_Radmind_Pres.pdf. (20 March 2005).
20 Research Systems Unix Group, University of Michigan. Radmind. 15 February 2005.

http://rsug.itd.umich.edu/software/radmind/download.html. (20 March 2005).

© SA
NS I

ns
tit

ut
e 2

00
0 -

 20
0

5,

Aut
ho

r r
eta

ins
 fu

ll r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

54

21 Löfflmann, Johann N. Free Java-Software - Jacksum, a java checksum utility. 5 February 2005.
http://www.jonelo.de/java/jacksum/. (20 March 2005).

22 Research Systems Unix Group, University of Michigan. Using TLS with Radmind.
http://rsug.itd.umich.edu/software/radmind/files/radmind-tls-0.9.1.pdf. (20 March 2005).

23 Research Systems Unix Group, University of Michigan. Index of /software/radmind/files. 1 March
2005. http://rsug.itd.umich.edu/software/radmind/files/. (20 March 2005).

24 Wikipedia. SHA Hash Functions. 18 March 2005. http://en.wikipedia.org/wiki/SHA-1. (20 March
2005).

25 Schneier, Bruce. Schneier on Security. 18 February 2005.
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html. (20 March 2005).

26 Zajkowski, Jim, Radmind Mailing List. Time to start changing the examples? Maybe not. 17
February 2005. https://mailman.rice.edu/pipermail/radmind/2005-February/009001.html. (20 March
2005).

27 SecurityFocus. Bugtraq Mailing List. 19 March 2005. http://www.securityfocus.com/archive/1. (20
March 2005).

28 Lehti, Rami. The AIDE Manual. http://www.cs.tut.fi/~rammer/aide/manual.html. (20 March 2005).
29 Wichmann, Rainer. Samhain. 2004. http://la-samhna.de/samhain/manual/. (20 March 2005).
30 Tripwire Security Systems, Inc. Tripwire Intrusion Detection System 1.3 for LINUX User Manual. 27

July 1998. http://www.cosmic-ray.org/miscfiles/idsl_1_3.pdf. (20 March 2005).
31 Wichmann, Rainer. A comparison of several host/file integrity checkers (scanners). 30 November

2004. http://la-samhna.de/library/scanners.html. (20 March 2005).

